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Abstract

Variations in environmental variables and measurement errors often result in large and heterogeneous variations in fitting fish
stock–recruitment (SR) data to a SR statistical model. In this paper, the maximum likelihood method was used to fit the six statistical
SR models on six sets of simulated SR data. The best relationships were selected using the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) methods, respectively. Which have the advantage of testing the significance of the difference between the functions
o at both AIC
a IC.
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f different model specifications. The exercises were also conducted on eight sets of real fisheries SR data. The results showed th
nd BIC are valid in selecting the most suitable SR relationship. As far as the nested models are concerned, BIC is better than A
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. Introduction

Stock–recruitment (SR) relationship is fundamental for
sh stock assessment and management (Ricker, 1975;
ilborn and Walters, 1992). It can be used to answer some

mportant management questions such as whether recruit-
ent can fail owing to over-exploitation (Cushing, 1981). The
R models are often used to derive important management
uantities which are used as reference points for managing
sh stocks. However, the determination of the SR relation-
hip is perhaps among the most difficult tasks in fisheries.
arge variations in recruitment, large measurement errors

n spawning stock size (errors-in-variable), and correlations
etween the present spawning stock size and previous recruit-
ent values (time series bias) can cause large uncertainties

bias and variability) in parameter estimates (Hilborn and
alters, 1992).
Another source of uncertainty in applying the SR relation-

hip is caused by choosing a particular form of SR curves

∗ Corresponding author. Tel.: +86 532 82032605; fax: +86 532 82032605.

to fit the SR data (model structural error). There are m
functional forms of stock–recruitment models in literat
(Quinn and Deriso, 1999). Since different SR models c
result in quite different estimates of management quant
thus greatly affecting the fisheries stock management an
enhancement plans, one needs to select among the di
SR relationships even when many of those fit the data a
equally well.

Hiramatsu et al. (1994)present a method for estimati
the SR parameters using the maximum likelihood method
selecting the best model using the AIC, and apply this me
to several real data sets. AIC has the advantage of te
the significance of the differences between the function
different model specifications (Akaike, 1973). Sakamoto e
al. (1986)describe an alternative to the AIC, called the B
(Adkison et al., 1996), which is also a tool of selecting t
best model.

The purpose of this paper is to test and compare the a
of AIC and BIC in selecting the true SR models by simula
SR data generated by the six SR models. Apart from the s
lated data, eight sets of real fisheries SR data are chose
E-mail address: wangyj@mail.ouc.edu.cn (Y. Wang). the published papers. Their SR relationships are estimated
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by the maximum likelihood method and the best models are
selected using AIC and BIC, respectively.

2. Method and data

2.1. Statistical model

The following six statistical models are defined, including
both the linear and the non-linear models:

R = αS (1)

R = αS e−βS (2)

R = αS

1 + βS
(3)

R = αSγ (4)

R = αS

1 + (βS)γ
(5)

R = αSγ e−βS (6)

whereR is the recruitment size resulting from parental stock
sizeS, andα, β andγ are the parameters of the SR equa-
t ent)
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2.2. Simulated data

To evaluate the ability of AIC and BIC to select the best
model, we treat the above models as operating models to sim-
ulate artificial SR data sets and then fit each of the simulated
data sets using the above models, which are then treated as
statistical models.

Six sets of artificial SR data are simulated with the true
parameters ofα = 10, β = 0.1, γ = 2 using the six models,
respectively. White noises of 20% (coefficient of variation)
are superimposed on the simulated data. We generate 1000
sets of simulated artificial SR data using each of the six oper-
ating models. In total, 6× 1000 data sets are simulated. For
example,Fig. 1shows the simulated data sets for one of the
simulations.

2.3. Real fisheries data

Eight sets of real fisheries SR data are selected from the
published papers. The sources of data used in this paper are
shown inTable 1. The selected species include invertebrate,
small pelagics, anadromous species, ground fish and large
pelagic species. The measures of stock size include quan-
tities such as the number of spawning stock, and the index
of spawning stock size. The measures of recruitment are the
relative number of recruits (Fig. 2).
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ions. Model 1 is a linear relation (density-independ
odel. Model 2 is the Ricker model (Ricker, 1954), when
= 0, it becomes the linear relation model. Model 3 is
everton–Holt model (Beverton and Holt, 1957), whenβ = 0,

t also corresponds to the linear relation model. Model 4 i
ushing model (Cushing, 1971, 1973), whenγ = 1, it corre-
ponds to the linear relation model. Model 5 is theShepherd
odel (1982). The Beverton–Holt model is a special c
f this general model whenγ = 1. Whenγ >1, the curve i
ome-shaped like the Ricker model. And whenγ < 1, the
urve increases indefinitely like the Cushing model. Mod
s the Gamma model. Whenγ > 0, the curve is dome-shap
ike the Ricker model. Whenβ = 0, the curve becomes t
ushing model. Whenγ approaches 0, the curve is sim

o that of the Beverton–Holt model (Reish et al., 1985). Each
odel has from one to three parameters.
We assumeR is log-normally distributed around the S

quation. Thus,

= f (S) eε

hereε ∼ N (0, σ2). Because the variation in recruitme
sually increases with stock size (the data points are
cattered for large stock size in a stock–recruitment sc
lot), the logarithm can transfer the data to the normal d
ution and stabilize the variances. In theory, the recruitm
rocess consists of many multiplicative processes from h

ng to recruitment, thus, if a log is taken from the recruitm
he log recruitment is the sum of the logs of many proce
n the basis of the central limit theorem, log recruitme
ormally distributed (Quinn and Deriso, 1999).
.4. Maximum likelihood method, AIC and BIC

In general, the maximum-likelihood estimators are to
referred over the least squares because the maximum

ihood is based on careful considerations of how ran
errors” arise and how they are distributed. Most reliable fi
ries parameter estimations are currently being achiev
sing the maximum likelihood method (Hilborn and Walters
992; Hilborn and Mangel, 1997). The basic idea behin
aximum likelihood is to find the values of the parame

or which the observed data is most likely to occur.

able 1
he eight sets of real fisheries SR data

ata no. Populations Source

Chesapeake Bay blue crab
(callinectes sapidus Linnaeus)

Zhan (1995)

Bohai penaeid shrimp (Penaeus
orientalis Kishinouye)

Deng et al. (1996)

Yellow Sea squid (Loligo japonica
Steenstrup)

Qiu (1986)

Pacific sardine (Sardinops sagax
Jenyns)

Larry and Alec (1995)

Peruvian anchovy (Engraulis
ringens Jenyns)

Cury and Roy (1989)

Tillamook Bay chum salmon
(Oncorhynchus keta Walbaum)

Ricker (1975)

Yellowfin tuna (Thunnus albacares
Bonnaterre)

Wang and Tanaka (198

Flathead flounder (Hippoglossoides
elassodon Jordan et Gilbert)

Dyakov (1995)
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Fig. 1. Scatter plots of the six simulated stock–recruitment data set, the sources of the data are inTable 1. X-axis represents stock index andY-axis represents
recruitment index. (a) Data set simulated from the linear model. (b) Data set simulated from the Ricker model. (c) Data set simulated from the Beverton–Holt
model. (d) Data set simulated from the Cushing model. (e) Data set simulated from the Shepherd model. (f) Data set simulated from the Gamma model.

Fig. 2. Scatter plots of the eight real fisheries stock–recruitment data sets.X-axis represents stock index andY-axis represents recruitment index.
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For the above six models, the likelihood of any set of
observation can be represented by the following equation:

L(D|Θ) =
i=1∏
n

1

Ri

√
2πσ

exp

(
− (ln(Ri) − ln(R̂i))

2

2σ2

)

whereL(D|Θ) is the likelihood of the data setD given the
parameter vectorΘ, Θ denotes (α, β, γ, σ2) and Ri and
R̂i are theith observed and predicted recruitment value of
the data setD, respectively. Because the reciprocal of the
observed recruitment value1

Ri
, has no effect on the opti-

mization of the model fitting and the model selection, is
omitted.

Then, the maximum likelihood estimates of the parameters
are obtained using the trust region method in the optimization
toolbox of MATLAB6.5. For each SR model, the model is

re-written in a linear form. The linear regression parameter
estimates obtained forα, β andγ are considered as initial
values in the application of the iterative method to estimate
the parametersα, β andγ in the non-linear SR models. To
obtain the biologically meaningful parameter estimates, all
the parameters are bounded as positive values. Then, the best
suitable stock–recruitment relationships are selected using
AIC and BIC, respectively.

AIC = −2 ln(maximum likelihood)+ 2m

BIC = −2 ln(maximum likelihood)+ m ln(n)

where m is the number of the estimated parameters and
n is the number of the observations. The model which
gives the minimum AIC or BIC is selected as the best
model.

Table 2
The average values of the estimated parameters ofα, β, γ and AIC and BIC for the six simulated SR data sets which are simulated from the six SR statistical
models

Data Model

Linear Ricker B–H Cushing Shepherd Gamma

(a) The estimated averageα values (true value = 10)
Linear 10.102 10.636 10.730 10.228 20.122 19.628

17.4 49
9.9 91

103 813
16 449
24. 948

(
0.0 8
0.5 0
0.1 2
0.0 1
0.3 86
0.0 9

(

(

(

T

Ricker 2.349 10.139
B–H 4.391 8.304
Cushing 103.351 103.830
Shepherd 3.349 11.476
Gamma 24.228 24.875

b) The estimated averageβ values (true value = 0.1)
Linear 0.004
Ricker 0.100
B–H 0.044
Cushing 0.000
Shepherd 0.085
Gamma 0.002

c) The estimatedγ average values (true value = 2)
Linear
Ricker
B–H
Cushing
Shepherd

Gamma

d) The average AIC values
Linear 40.496 42.087 42.0
Ricker 81.745 18.375 37.92
B–H 49.863 29.996 28.45
Cushing 102.051 104.422 104
Shepherd 74.622 25.002 35
Gamma 71.593 73.291 73.

e) The average BIC values
Linear 41.776 44.889 44.8
Ricker 83.146 21.178 40.72
B–H 51.264 32.799 31.25
Cushing 103.452 107.224 106
Shepherd 76.023 27.804 38
Gamma 72.994 76.093 76.

he number in bold means the minimum AIC or BIC that is selected as the b
47 12.092 8.573 10.0
88 9.691 10.595 9.0
.729 9.945 104.805 9.
.913 9.679 10.308 11.
554 11.870 29.820 9.

05 3.409 0.72
61 0.114 0.10
01 0.378 0.03
00 0.018 0.01
44 0.106 0.0
01 0.125 0.09

0.993 0.397 0.634
0.297 2.218 0.997
0.662 1.160 0.886
2.006 29.686 2.078
0.662 2.027 1.011

1.306 17.407 1.999

58 41.806 43.651 44.008
5 50.452 20.324 19.649

4 33.578 30.540 30.714
.071 67.401 105.880 68.678
.351 33.387 23.330 26.737
561 67.167 74.122 54.526

60 44.608 47.855 48.212
7 53.254 24.528 23.852

7 36.380 34.744 34.918
.873 70.204 110.084 72.882
.154 36.189 26.132 30.941
363 69.969 78.326 58.730

est model.
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3. Results

3.1. Simulated data

Table 2a–c shows the results of the estimated average
parametersα, β andγ for the simulated data.Table 2d shows
the AIC values for the simulated data. Applying the criterion
that the model with the minimum value of AIC is the most
suitable model,Table 2d indicates that the AIC method can
locate the most suitable model because the model that best fits
the data is the model that simulates the data.Table 2e shows
the result of the average BIC values. Similar to the result of
AIC, for a given set of data, BIC also selects the model that
generates the data set.

3.2. Real fisheries data

Table 3a–c shows the results of the estimated average
parametersα, β andγ for the real fisheries SR data.Table 3d
shows the AIC values for the real fisheries SR data. The
linear model is most suitable for the Pacific sardine data
(Fig. 2d). The Ricker model is most suitable for the Chesa-
peake Bay blue crab data (Fig. 2a), Tillamook Bay chum
salmon data (Fig. 2f) and Yellowfin tuna (Fig. 2g). The
Beverton–Holt model is best suitable for the Flathead floun-
der data (Fig. 2h). The Cushing model is best suitable for the
Y vy
d the
B g,
t ept
f -
i IC
(

4

-
c ost
s nces
i real
fi have
t hovy
d the
l ting
m tisti-
c
r ture
i een
t odel
( d as
t rin-
c and
n
t more
p nious

Table 3
The values of the estimated parameters ofα, β, γ and the AIC and BIC for
the eight real SR data sets

Data Model

Linear Ricker B–H Cushing Shepherd Gamma

(a) The estimatedα values
1 4.598 10.338 17.449 54.610 6.790 2.186
2 41.683 90.054 96.447 73.452 61.896 89.993
3 15.839 31.391 89.444 284.644 242.074 256.503
4 2.167 2.648 2.626 3.643 2.443 0.482
5 34.220 43.111 45.357 55.624 225.594 54.818
6 1.923 4.023 6.332 221.887 3.050 0.659
7 0.470 0.622 0.646 0.889 0.536 0.427
8 0.213 0.528 1.465 37.598 0.797 5.563

(b) The estimatedβ values
1 0.0269 0.0964 0.0240 0.0500
2 0.1622 0.3200 0.1346 0.2789
3 0.0046 0.0525 0.4694 0.0000
4 0.0002 0.0002 0.0003 0.0005
5 0.0267 0.0396 47.4380 0.0000
6 0.0009 0.0032 0.0009 0.0001
7 0.0170 0.0240 0.0235 0.0302
8 0.0016 0.0112 0.0041 0.0008

(c) The estimatedγ values
1 0.262 2.771 1.669
2 0.541 4.156 1.449
3 0.328 0.740 0.351
4 0.920 3.450 1.320
5 0.744 0.299 0.750
6 0.270 2.335 1.320
7 0.857 0.178 0.669
8 0.755 2.562 1.227

(d) The estimated AIC values
1 −11.107−14.886 −11.553 −9.961 −14.515 −14.564
2 28.560 22.079 24.255 25.507 21.562 22.858
3 27.986 23.780 18.715 17.877 19.637 19.559
4 83.520 84.453 84.584 85.242 85.956 85.576
5 63.602 64.499 64.386 63.314 65.408 65.316
6 49.955 40.337 42.088 43.106 42.038 42.128
7 23.769 20.588 20.859 21.916 22.270 22.211
8 34.455 13.062 12.139 12.724 13.834 13.349

(e) The estimated BIC values
1 −12.103−12.895 −9.562 −7.969 −11.528 −11.577
2 29.045 23.049 25.225 26.827 23.016 24.313
3 28.183 24.174 19.109 17.921 20.229 20.150
4 84.887 87.188 87.318 87.976 90.057 89.678
5 64.934 67.164 67.050 65.978 69.404 69.312
6 49.955 42.329 44.079 45.097 45.025 45.115
7 24.904 22.859 23.130 24.187 25.677 25.618
8 35.500 15.151 14.229 14.813 16.968 16.483

The number in bold means the minimum AIC or BIC that is selected as the
best model.

principle. However, BIC is more likely to result in a parsimo-
nious model, it more seriously penalizes the introduction of
additional parameters seriously by adding the term ofm ln(n)
in the BIC function, wherem is the number of parameters
andn is the number of observations.

In order to compare the validity of AIC and BIC, we use the
likelihood ratio test method to check the selection results for
AIC and BIC for the data set of Peruvian anchovy (Fig. 2e).
ellow Sea squid data (Fig. 2c) and the Peruvian ancho
ata (Fig. 2e). The Shepherd model is best suitable for
ohai penaeid shrimp data (Fig. 2b). Generally speakin

he selection results of BIC are identical with AIC exc
or the data for the Peruvian anchovy (Fig. 2e). The Cush
ng model is selected by AIC and the linear model by B
Table 3e).

. Discussion

According to the simulation study (Table 2), we can con
lude that AIC and BIC are both robust in selecting the m
uitable SR relationships. However, there is a few differe
n the selection result of AIC and BIC when applied to
sheries SR data. Commonly, competing models do not
he same number of parameters. For the Peruvian anc
ata (Fig. 2e), the Cushing model is selected by AIC and

inear model by BIC. In theory, when one of two compe
odels is a sub-model of the other (i.e. nested), a sta

al comparison can be made with anF test, with a likelihood
atio test when a probability distribution of the error struc
s specified. If there is not a significant difference betw
he full model (i.e. complex model) and the reduced m
i.e. simple model), the reduced model is often selecte
he best suitable model, i.e. following the parsimonious p
iple. AIC and BIC can be applied to both non-nested
ested models.Quinn and Deriso (1999)state that the AIC

ends to be a conservative criterion because a model with
arameters is often selected, which breaks the parsimo
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Table 4
The AIC, BIC and the likelihood ratio test result for the Peruvian anchovy
SR data

Model Number of
parameters

AIC BIC Negative
log-likelihood

Linear 1 63.602 64.934 30.801
Cushing 2 63.314 65.978 29.657

Table 4shows the selection results for AIC, BIC and the
likelihood ratio test for the Peruvian anchovy data. Twice
the difference in the negative log-likelihood between the lin-
ear model and the Cushing model is 2.288. The chi-square
probability of change in 2.288 with one degree of freedom is
greater than 0.1. There is not a significant difference between
the Cushing model and the linear model. The reduced model,
that is the linear model, is selected as the best model. This
result is identical with BIC. Perhaps as far as the nested mod-
els are concerned, BIC is better suitable than AIC. Because
only limited data sets are used in this paper, further research
is needed.

There are a number of methods to select the suitable
SR model for a given SR data. Although statistical fit is
important for fisheries analyses and the parameters can
be given a real world interpretation, the equations should
be regarded as an empirical description rather than as an
explanation of events. To obtain a theoretical or explana-
tory statement about the observable world, relationships
between stock size and the resulting recruitment should
also be based on biological details and life history of the
real species. In most cases, statistical fits are identical with
biologically based results. For example, The Tillamook
Bay chum salmon (Fig. 2f) selected the Ricker model and
the Flathead flounder (Fig. 2h) selected the Beverton–Holt
model, which confirms the theoretical expectations of the SR
m
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