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Abstract

Variations in environmental variables and measurement errors often result in large and heterogeneous variations in fitting fish
stock-recruitment (SR) data to a SR statistical model. In this paper, the maximum likelihood method was used to fit the six statistical
SR models on six sets of simulated SR data. The best relationships were selected using the Akaike information criterion (AIC) and Bayesial
information criterion (BIC) methods, respectively. Which have the advantage of testing the significance of the difference between the functions
of different model specifications. The exercises were also conducted on eight sets of real fisheries SR data. The results showed that both Al
and BIC are valid in selecting the most suitable SR relationship. As far as the nested models are concerned, BIC is better than AIC.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction to fit the SR data (model structural error). There are many
functional forms of stock—recruitment models in literature
Stock—recruitment (SR) relationship is fundamental for (Quinn and Deriso, 1999 Since different SR models can
fish stock assessment and managemdricker, 1975; result in quite different estimates of management quantities,
Hilborn and Walters, 1992 It can be used to answer some thus greatly affecting the fisheries stock management and fish
important management questions such as whether recruitenhancement plans, one needs to select among the different
ment can fail owing to over-exploitatio@@shing, 1981 The SR relationships even when many of those fit the data almost
SR models are often used to derive important managementequally well.
quantities which are used as reference points for managing Hiramatsu et al. (1994present a method for estimating
fish stocks. However, the determination of the SR relation- the SR parameters using the maximum likelihood method and
ship is perhaps among the most difficult tasks in fisheries. selecting the best model using the AIC, and apply this method
Large variations in recruitment, large measurement errorsto several real data sets. AIC has the advantage of testing
in spawning stock size (errors-in-variable), and correlations the significance of the differences between the functions of
between the present spawning stock size and previous recruitdifferent model specification®kaike, 1973. Sakamoto et
ment values (time series bias) can cause large uncertaintiesl. (1986)describe an alternative to the AIC, called the BIC
(bias and variability) in parameter estimatésiliforn and (Adkison et al., 1995 which is also a tool of selecting the
Walters, 1992 best model.
Another source of uncertainty in applying the SR relation- ~ The purpose of this paper is to test and compare the ability
ship is caused by choosing a particular form of SR curves of AIC and BIC in selecting the true SR models by simulated
SR data generated by the six SR models. Apart from the simu-
* Corresponding author. Tel.: +86 532 82032605; fax: +86 532 82032605, |ated data, eight sets of real fisheries SR data are chosen from
E-mail address: wangyj@mail.ouc.edu.cn (Y. Wang). the published papers. Their SR relationships are estimated
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by the maximum likelihood method and the best models are 2.2. Simulated data
selected using AIC and BIC, respectively.
To evaluate the ability of AIC and BIC to select the best
model, we treat the above models as operating models to sim-

2. Method and data ulate artificial SR data sets and then fit each of the simulated
data sets using the above models, which are then treated as
2.1. Statistical model statistical models.

Six sets of artificial SR data are simulated with the true
The following six statistical models are defined, including parameters otr=10, =0.1, y=2 using the six models,

both the linear and the non-linear models: respectively. White noises of 20% (coefficient of variation)
are superimposed on the simulated data. We generate 1000
R=aS (1) sets of simulated artificial SR data using each of the six oper-
_gs ating models. In total, & 1000 data sets are simulated. For
R=aSe ) example Fig. 1shows the simulated data sets for one of the
as simulations.
R= 3)
1+88
2.3. Real fisheries data
R=aS” (4)
s Eight sets of real fisheries SR data are selected from the
- (5) published papers. The sources of data used in this paper are
1+(8S) shown inTable 1 The selected species include invertebrate,
R— S’ e bS ©6) small pelagics, anadromous species, ground fish and large

pelagic species. The measures of stock size include quan-

wherer is the recruitment size resulting from parental stock liti€s such as the number of spawning stock, and the index
size S, anda, B andy are the parameters of the SR equa- of spawning stock size. The measures of recruitment are the
tions. Model 1 is a linear relation (density-independent) relative number of recruits§g. 2).

model. Model 2 is the Ricker modeR{cker, 1954, when

B=0, it becomes the linear relation model. Model 3 is the 2-4 Maximum likelihood method, AIC and BIC

Beverton—Holt modelgeverton and Holt, 1957whens =0, . o )

it also corresponds to the linear relation model. Model 4isthe N general, the maximum-likelihood estimators are to be
Cushing modelCushing, 1971, 197%3wheny =1, it corre- preferr_ed over the least squares _becaqse the maximum like-
sponds to the linear relation model. Model 5 is Steepherd lihood is l_aased on careful con_5|d_erat|0ns of how ranc_iom
model (1982) The Beverton—Holt model is a special case “errors” arise and hoyvth(_ay are distributed. Mo;t rehab_leﬂsh-
of this general model whep=1. Wheny > 1, the curve is eries parametgr esumat_lons are curre_ntly being achieved by
dome-shaped like the Ricker model. And whek 1, the using thg maximum likelihood metholslﬂborn a_nd Walter's,
curve increases indefinitely like the Cushing model. Model 6 1992; Hilborn and Mangel, 1997The basic idea behind

is the Gamma model. When> 0, the curve is dome-shaped ~Maximum likelihood is to f|nq the val_ues of the parameters
like the Ricker model. Wheps =0, the curve becomes the for which the observed data is most likely to occur.

Cushing model. Whep approaches 0, the curve is similar
to that of the Beverton—Holt moddRgish et al., 1986 Each
model has from one to three parameters.

Table 1
The eight sets of real fisheries SR data

i oty D . Populati
We assumeR is log-normally distributed around the SR~ 2@no- Populations Source
equation. Thus, 1 Chesapeake Bay blge crab Zhan (1995)
(callinectes sapidus Linnaeus)
R = f(S)¢€ 2 Bohai penaeid shrimgPénaeus Deng et al. (1996)

orientalis Kishinouye)

Yellow Sea squidloligo japonica  Qiu (1986)
Steenstrup)

Pacific sardineSardinops sagax Larry and Alec (1995)

wheree ~N (0, o2). Because the variation in recruitment
usually increases with stock size (the data points are more,

scattered for large stock size in a stock—recruitment scatter Jenyns)

plot), the logarithm can transfer the data to the normal distri- 5 Peruvian anchovyHpgraulis Cury and Roy (1989)
bution and stabilize the variances. In theory, the recruitment ”’_’ﬁé’e”s Jinyns) o | .

process consists of many multiplicative processes from hatch-° Tillamook Bay chum salmon Ricker (1975)

. . : . . (Oncorhynchus keta Walbaum)

ing to recrwtment, thus, if a log is taken from the recruitment, - Yellowfin tuna (hunnus albacares  Wang and Tanaka (1988)
the log recruitment is the sum of the logs of many processes. Bonnaterre)

On the basis of the central limit theorem, log recruitment is 8 Flathead floundeHippoglossoides ~ Dyakov (1995)

normally distributed Quinn and Deriso, 1999 elassodon Jordan et Gilbert)
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Fig. 1. Scatter plots of the six simulated stock—recruitment data set, the sources of the dafable InX-axis represents stock index aFexis represents
recruitment index. (a) Data set simulated from the linear model. (b) Data set simulated from the Ricker model. (c) Data set simulated from théiBkverton
model. (d) Data set simulated from the Cushing model. (e) Data set simulated from the Shepherd model. (f) Data set simulated from the Gamma model.
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Fig. 2. Scatter plots of the eight real fisheries stock—recruitment dat&saxsés represents stock index akeixis represents recruitment index.
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For the above six models, the likelihood of any set of re-written in a linear form. The linear regression parameter
observation can be represented by the following equation: estimates obtained far, 8 andy are considered as initial
values in the application of the iterative method to estimate
the parametera, 8 andy in the non-linear SR models. To
obtain the biologically meaningful parameter estimates, all
the parameters are bounded as positive values. Then, the best
whereL(D|®) is the likelihood of the data sé given the suitable stock—recruitment relationships are selected using
parameter vecto®, © denotes &, B, y, 02) andR; and ~ AIC and BIC, respectively.

R; are theith observed_ and predicted recruitr_nent value of pjc = _»o In(maximum likelihood)+ 2m

the data seD, respectively. Because the reciprocal of the
observed recruitment valu%, has no effect on the opti-
mization of the model fittin’g and the model selection, is
omitted. wherem is the number of the estimated parameters and

Then, the maximum likelihood estimates of the parameters n is the number of the observations. The model which
are obtained using the trust region method in the optimization gives the minimum AIC or BIC is selected as the best
toolbox of MATLABG.5. For each SR model, the model is model.

= (In(R:) — In(Ry))?
iz e 22

L(D|®) =

BIC = —2 In(maximum likelihood}H m In(n)

Table 2

The average values of the estimated parameters gfy and AIC and BIC for the six simulated SR data sets which are simulated from the six SR statistical
models

Data Model
Linear Ricker B-H Cushing Shepherd Gamma
(a) The estimated averagevalues (true value = 10)
Linear 10.102 10.636 10.730 10.228 20.122 19.628
Ricker 2.349 10.139 17.447 12.092 8.573 10.049
B—H 4.391 8.304 9.988 9.691 10.595 9.091
Cushing 103.351 103.830 103.729 9.945 104.805 9.813
Shepherd 3.349 11.476 16.913 9.679 10.308 11.449
Gamma 24.228 24.875 24.554 11.870 29.820 9.948
(b) The estimated averagevalues (true value =0.1)
Linear 0.004 0.005 3.409 0.728
Ricker 0.100 0.561 0.114 0.100
B-H 0.044 0.101 0.378 0.032
Cushing 0.000 0.000 0.018 0.011
Shepherd 0.085 0.344 0.106 0.086
Gamma 0.002 0.001 0.125 0.099
(c) The estimategt average values (true value = 2)
Linear 0.993 0.397 0.634
Ricker 0.297 2.218 0.997
B-H 0.662 1.160 0.886
Cushing 2.006 29.686 2.078
Shepherd 0.662 2.027 1.011
Gamma 1.306 17.407 1.999
(d) The average AIC values
Linear 40.496 42.087 42.058 41.806 43.651 44.008
Ricker 81.745 18.375 37.925 50.452 20.324 19.649
B—H 49.863 29.996 28.454 33.578 30.540 30.714
Cushing 102.051 104.422 104.071 67.401 105.880 68.678
Shepherd 74.622 25.002 35.351 33.387 23.330 26.737
Gamma 71.593 73.291 73.561 67.167 74.122 54.526
(e) The average BIC values
Linear 41.776 44.889 44.860 44.608 47.855 48.212
Ricker 83.146 21.178 40.727 53.254 24.528 23.852
B-H 51.264 32.799 31.257 36.380 34.744 34.918
Cushing 103.452 107.224 106.873 70.204 110.084 72.882
Shepherd 76.023 27.804 38.154 36.189 26.132 30.941
Gamma 72.994 76.093 76.363 69.969 78.326 58.730

The number in bold means the minimum AIC or BIC that is selected as the best model.
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3. Results Table 3
The values of the estimated parametera,g8, y and the AIC and BIC for
the eight real SR data sets

Data Model

3.1. Simulated data

Table 2—c shows the results of the estimated average Linear  Ricker B-H Cushing Shepherd Gamma
parameterg, 8 andy for the simulated datdable 21 shows (a) The estimated values
the AIC values for the simulated data. Applying the criterion 1 4598 10.338 17.449 54.610 6.790 2.186
that the model with the minimum value of AIC is the most 2 41.683 90.054  96.447 73452 61.896  89.993
suitable modelTable 21 indicates that the AIC method can i 12?2? 3;-;2; 829-:5‘;? 28346T34 2‘;242734 2364223
locate thg most suitable model because the model that best fits 5 34220 43111 45357 55624 225504 54818
the data is the model that simulates the d&itdle 2 shows 6
7
8

- (t 1.923  4.023 6.332 221.887  3.050 0.659
the result of the average BIC values. Similar to the result of

0.470  0.622 0.646 0.889  0.536 0.427
AIC, for a given set of data, BIC also selects the model that 0.213  0.528 1465  37.598 0.797 5.563

generates the data set. (b) The estimateg values
1 0.0269  0.0964 0.0240  0.0500
3.2. Real fisheries data 2 0.1622 0.3200 0.1346 0.2789
3 0.0046  0.0525 0.4694  0.0000
. 4 0.0002  0.0002 0.0003  0.0005
Table 3—c shows the result§ of t.he estimated average ¢ 00267  0.0396 474380  0.0000
parameters, 8 andy for the real fisheries SR daféable 3 6 0.0009 0.0032 0.0009 0.0001
shows the AIC values for the real fisheries SR data. The 7 0.0170 0.0240 0.0235 0.0302
linear model is most suitable for the Pacific sardine data 8 0.0016  0.0112 0.0041  0.0008

(Fig. 2d). The Ricker model is most suitable for the Chesa- (c) The estimateg values
peake Bay blue crab dat&i). 2a), Tillamook Bay chum
salmon data Kig. 2) and Yellowfin tuna Fig. 29). The
Beverton—Holt model is best suitable for the Flathead floun-
der dataFig. 2h). The Cushing model is best suitable for the
Yellow Sea squid data{g. 2c) and the Peruvian anchovy
data Fig. 2e). The Shepherd model is best suitable for the
Bohai penaeid shrimp dat#&if). 2v). Generally speaking,
the selection results of BIC are identical with AIC except (d) The estimated AIC values

0.262 2.771 1.669
0.541 4.156 1.449
0.328 0.740 0.351
0.920 3.450 1.320
0.744 0.299 0.750
0.270 2.335 1.320
0.857 0.178 0.669
0.755 2.562 1.227

o~NO A WNRE

for the data for the Peruvian anchowig. 2e). The Cush- 1 -11107-14.886 —11.553 -9.961 —14.515 -14.564
ing model is select AIC and the linear model by BI 2 28560 22079 24255 25507 21562  22.858
Tg bl ogae s selected by AIC and the linear model by BIC 3 27986 23780 18715 17877 19.637  19.559
(Table %). 4 83520 84.453 84584 85242 85956  85.576
5 63.602 64.499  64.386 63314 65408  65.316
6  49.955 40337  42.088  43.106 42.038  42.128
4. Discussion 7 23769 20588  20.859  21.916 22270 22211
8 34455 13.062 12139 12724 13.834  13.349
According to the simulation studyrgble 9, we can con-  (e) The estimated BIC values
clude that AIC and BIC are both robust in selecting the most ; *g-égg*lzzésgig *92-5562225 *7-2%6327*;;31268 *;Lllgg
_sunable SR relatlonsh|ps. However, there is afew_dlfferences 3 28183 24174 19109 17921 20229 20150
in the.selectlon result of AIC and BIC.When appliedtoreal 4, g4887 87.188 87318 87.976 90057  89.678
fisheries SR data. Commonly, competing modelsdonothave 5 64934 67.164 67.050 65978 69.404  69.312
the same number of parameters. For the Peruvian anchovy 6  49.955 42329 44079  45.097 45025 45115
data Fig. 2e), the Cushing model is selected by AIC and the 7~ 24.904 22859 = 23.130  24.187 25677 25618
8 35500 15151 14229  14.813 16.968  16.483

linear model by BIC. In theory, when one of two competing
models is a sub-model of the other (i.e. nested), a statisti- The number in bold means the minimum AIC or BIC that is selected as the
cal comparison can be made with Atest, with a likelihood ~ PeStmodel

ratio test when a probability distribution of the error structure

is specified. If there is not a significant difference between principle. However, BIC is more likely to result in a parsimo-
the full model (i.e. complex model) and the reduced model nious model, it more seriously penalizes the introduction of
(i.e. simple model), the reduced model is often selected asadditional parameters seriously by adding the term ki)

the best suitable model, i.e. following the parsimonious prin- in the BIC function, wheren is the number of parameters
ciple. AIC and BIC can be applied to both non-nested and andn is the number of observations.

nested modelQuinn and Deriso (199%tate that the AIC Inorderto compare the validity of AIC and BIC, we use the
tendsto be a conservative criterion because a model with mordikelihood ratio test method to check the selection results for
parameters is often selected, which breaks the parsimoniousAIC and BIC for the data set of Peruvian anchog( 2e).
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